Brief Review Regulation of Lipid Droplet Cholesterol Efflux From Macrophage Foam Cells
نویسندگان
چکیده
Cholesterol efflux from macrophages is the first and potentially most important step in reverse cholesterol transport, a process especially relevant to atherosclerosis and to the regression of atherosclerotic plaques. Increasingly, lipid droplet (LD) cholesteryl ester (CE) hydrolysis is being recognized as a rate-limiting step in cholesterol efflux. The traditional view on macrophage CE hydrolysis is that this pathway is entirely dependent on the action of neutral hydrolases, and numerous candidate CE hydrolases have been proposed to play a role in lipid hydrolysis in macrophages and atherogenesis. Although the exact identity of macrophage-specific CE hydrolases remains to be clarified, a common point to all of these studies is that enhancing LD-associated CE hydrolysis increases cholesterol efflux and is antiatherogenic. Understanding how cholesterol is mobilized from LDs offers new steps for modulating cholesterol efflux, and recently a role for autophagy and lysosomal acid lipase in macrophage lipolysis has emerged. Autophagy and lysosomal acid lipase thus represent novel therapeutic targets to enhance macrophage reverse cholesterol transport. This review discusses our current understanding of the relationship between macrophage LDs and atherosclerosis and presents recent insights into the mechanisms for LD CE hydrolysis in macrophage foam cells. (Arterioscler Thromb Vasc Biol. 2012;32:575-581.)
منابع مشابه
Regulation of lipid droplet cholesterol efflux from macrophage foam cells.
Cholesterol efflux from macrophages is the first and potentially most important step in reverse cholesterol transport, a process especially relevant to atherosclerosis and to the regression of atherosclerotic plaques. Increasingly, lipid droplet (LD) cholesteryl ester (CE) hydrolysis is being recognized as a rate-limiting step in cholesterol efflux. The traditional view on macrophage CE hydroly...
متن کاملAutophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase.
The lipid droplet (LD) is the major site of cholesterol storage in macrophage foam cells and is a potential therapeutic target for the treatment of atherosclerosis. Cholesterol, stored as cholesteryl esters (CEs), is liberated from this organelle and delivered to cholesterol acceptors. The current paradigm attributes all cytoplasmic CE hydrolysis to the action of neutral CE hydrolases. Here, we...
متن کاملThe Role of Macrophage Lipophagy in Reverse Cholesterol Transport
Macrophage cholesterol efflux is a central step in reverse cholesterol transport, which helps to maintain cholesterol homeostasis and to reduce atherosclerosis. Lipophagy has recently been identified as a new step in cholesterol ester hydrolysis that regulates cholesterol efflux, since it mobilizes cholesterol from lipid droplets of macrophages via autophagy and lysosomes. In this review, we br...
متن کاملNovel lipid droplet-associated serine hydrolase regulates macrophage cholesterol mobilization.
OBJECTIVE Lipid-laden macrophages or foam cells are characterized by massive cytosolic lipid droplet (LD) deposition containing mostly cholesterol ester (CE) derived from the lipoproteins cleared from the arterial wall. Cholesterol efflux from foam cells is considered to be atheroprotective. Because cholesterol is effluxed as free cholesterol, CE accumulation in LDs may limit free cholesterol e...
متن کاملEpoxycholesterol impairs cholesteryl ester hydrolysis in macrophage foam cells, resulting in decreased cholesterol efflux.
OBJECTIVE Strategies to inhibit or reverse cholesterol accumulation in macrophages have been shown to be atheroprotective. Notably, the administration of LXR agonists upregulates key players in the reverse cholesterol transport pathway, including the ABCA1 and ABCG1 transporters. However, the effects of natural LXR activators, oxysterols, on lipid-laden macrophages remains elusive. METHODS AN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012